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Poiseuille-type flow of a rarefied gas between two parallel plates driven by a uniform external force
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A unidirectional flow of a rarefied gas between two parallel plates driven by a uniform external force is
investigated on the basis of kinetic theory with special interest in the behavior in the near continuum regime.
The Bhatnagar-Gross-Krook~BGK! model of the Boltzmann equation and the diffuse reflection boundary
condition are employed as the basic system. First, a systematic asymptotic analysis of the basic system for
small Knudsen numbers is carried out, and a system of fluid-dynamic-type equations and their boundary
conditions are derived up to the second order in the Knudsen number. Then, an accurate numerical analysis of
the original BGK system is performed for a wide range of the Knudsen number by means of a finite-difference
method. The behavior of the gas, such as the non-Navier-Stokes effects in the near continuum regime, is
clarified on the basis of the fluid-dynamic-type system as well as the numerical solution of the BGK system.
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I. INTRODUCTION

Let us consider an ideal gas between two parallel infin
plates at rest with a common uniform temperature. When
gas is subject to a uniform external force in the direct
parallel to the plates, a steady unidirectional flow of the g
is caused between the plates. If one considers this prob
on the basis of the Navier-Stokes equation, it is a sim
one-dimensional example.

This classical problem was revisited rather recently in
framework of kinetic theory. Esposito, Lebowitz, and Mar
@1# studied its mathematical aspect, that is, they proved
convergence of the solution of the Boltzmann equation
that of the Navier-Stokes equation in the limit where t
Knudsen number vanishes~the continuum limit! when the
external force is weak. Here, the Knudsen number is the r
of the mean free path of the gas molecules to the dista
between the plates. They also clarified the mathemat
structure of the higher-order terms in the Knudsen num
On the other hand, the physical aspect of the problem
been studied by various authors by means of a variety
approximate and numerical methods@2–7#. The main inter-
est of these works is to clarify the phenomena in the n
continuum case that cannot be described by the Nav
Stokes equation. One of such phenomena is a bimodal s
of the temperature profile with a slight hollow at the cen
between the plates. This effect was first pointed out by Ma
Mansour, Baras, and Garcia@3# on the basis of a numerica
result obtained by the direct simulation Monte Carlo meth
and of an explicit perturbation solution derived earlier by
and Santos@2# using the Bhatnagar-Gross-Krook~BGK!
model @8–10#. However, the previous attempts to descri
such non-Navier-Stokes effects by macroscopic equat
are not satisfactory because no systematic asymptotic an
sis has been made for a complete kinetic system contai
the boundary condition.

In the present paper, we investigate this problem
means of a systematic asymptotic analysis for small Knud

*Electronic address: kaoki2@ip.media.kyoto-u.ac.jp
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numbers as well as a direct numerical analysis on the bas
kinetic theory. To avoid the complexity in the asymptot
analysis and to perform very accurate numerical compu
tion, we utilize the BGK model rather than the Boltzman
equation. But the asymptotic analysis for the latter equat
can be carried out in a similar way. In the case where ther
no external force, a fluid-dynamic description of rarefied g
flows in the near continuum regime has been established
general geometry by Sone and co-workers@11–19# by means
of a systematic asymptotic analysis of the Boltzmann syst
In the present paper, we carry out our asymptotic analy
following the asymptotic theory@11–19#.

The paper is organized as follows. We first give the f
mulation of the problem~Sec. II!, and then, after setting th
appropriate parameter relation that gives the Navier-Sto
equation in the continuum limit, we carry out a systema
asymptotic analysis for small Knudsen numbers to deriv
system of fluid-dynamic-type equations and their appropr
boundary conditions~Sec. III!. Here, we show that the bimo
dal shape of the temperature profile mentioned above is
tributed to the higher-order correction to the Navier-Stok
solution. An accurate numerical analysis of the original BG
system by a finite-difference method is also carried out
small Knudsen numbers, and the result is compared with
of the asymptotic analysis. In Sec. IV, we carry out the sa
numerical analysis for a wide range of the Knudsen num
and clarify its effect on the physical quantities. A discussi
about the result is given in Sec. V, where it is shown that
infinitesimally weak external force can cause a flow of
finite Mach number in the continuum limit.

II. FORMULATION OF THE PROBLEM

A. Problem

Let us consider a rarefied gas between two parallel infin
plates at rest located atX15L/2 and2L/2 and kept at tem-
peratureT0 , where Xi is the rectangular space coordina
system. The gas is subject to a uniform external force in
X2 direction, i.e., in the direction parallel to the plates. The
is no pressure gradient in theX2 direction. We investigate the
steady flow of the gas caused by the external force on
©2002 The American Physical Society15-1
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basis of kinetic theory for a wide range of the Knudsen nu
ber, paying special attention to the behavior for small Knu
sen numbers. Our basic assumptions are as follows:~i! The
behavior of the gas is described by the BGK model@8–10#
of the Boltzmann equation,~ii ! the gas molecules are re
flected diffusely on the plates.

B. Basic equation

The BGK model of the Boltzmann equation in the pres
problem is written as@17,20#

j1

] f

]X1
1F2

] f

]j2
5Acr~ f e2 f !, ~1!

f e5
r

~2pRT!3/2expS 2
~j i2v i !

2

2RT D , ~2!

r5E f dj, ~3a!

v i5
1

r E j i f dj, ~3b!

T5
1

3Rr E ~j i2v i !
2f dj, ~3c!

where j i is the molecular velocity, dj5dj1dj2dj3 ,
f (X1 ,j i) is the velocity distribution function of the gas mo
ecules,Fi5(0,F2,0) is a uniform external force in theX2
direction acting on the gas per unit mass,r(X1) is the den-
sity of the gas,v i(X1) is its flow velocity,T(X1) is its tem-
perature,R is the gas constant per unit mass, andAc is a
constant~Acr is the collision frequency of a gas molecul
which is independent of the molecular speed!. The domain of
integration with respect toj i in Eqs. ~3a!–~3c! and in Eqs.
~7a!–~7c! below is its whole space. The BGK model~1! is
consistent with the Boltzmann equation for the~cutoff! Max-
wellian molecules~see footnote 21 in Ref.@21#!.

The boundary condition on the plates (X156L/2) is
written as follows@17,20#:

f 5
rw

~2pRT0!3/2expS 2
j i

2

2RT0
D for 6j1.0

at X157L/2, ~4!

rw57S 2p

RT0
D 1/2E

6j1,0
j1f ~7L/2,j i !dj, ~5!

where the upper signs correspond to the condition atX15
2L/2, and the lower signs to that atX15L/2.

Now we assume thatf is even inj3 , so thatv350. The
analysis below can be performed consistently with this
sumption. Further, the integration of Eq.~1! with respect to
j i over its whole space leads torv15const. Sincerv150
on the boundary because of the diffuse reflection condi
@Eqs. ~4! and ~5!#, it turns out thatv150 identically in the
02631
-
-

t

-

n

gas. Therefore, it follows from Eqs.~1!–~5! that f is symmet-
ric with respect to theX2 axis, i.e.,

f ~X1 ,j1 ,j2 ,j3!5 f ~2X1 ,2j1 ,j2 ,j3!. ~6!

The pressurep(X1), stress tensorpi j (X1), and heat-flow
vectorqi(X1) are expressed in terms off as

p5RrT5
1

3 E ~j i2v i !
2f dj, ~7a!

pi j 5E ~j i2v i !~j j2v j ! f dj, ~7b!

qi5
1

2 E ~j i2v i !~j j2v j !
2f dj. ~7c!

In addition to v15v350, the relationsp13(5p31)5p23
(5p32)50 and q350 follow from the assumption in the
preceding paragraph.

C. Dimensionless variables

Let us now introduce the following dimensionless va
ables:

xi5
Xi

L
, z i5

j i

~2RT0!1/2, f̂ 5
~2RT0!3/2

rav
f ,

r̂5
r

rav
, v̂ i5

v i

~2RT0!1/2, T̂5
T

T0
,

~8!

p̂5
p

RravT0
, p̂i j 5

pi j

RravT0
,

q̂i5
qi

~rav/2!~2RT0!3/2,

where rav is the average density of the gas between
plates, andv̂15 v̂350 @see the paragraph below Eq.~5!#.
Then, the BGK equation, Eqs.~1!–~3c!, is written in the
following dimensionless form:

z1

] f̂

]x1
1F̂

] f̂

]z2
5

2

Ap

1

Kn
r̂~ f̂ e2 f̂ !, ~9!

f̂ e5
r̂

~pT̂!3/2
expS 2

z1
21~z22 v̂2!21z3

2

T̂
D , ~10!

r̂5E f̂ dz, ~11a!

v̂25
1

r̂
E z2 f̂ dz, ~11b!

T̂5
2

3r̂ E @z1
21~z22 v̂2!21z3

2# f̂ dz, ~11c!

F̂5F2L~2RT0!21, ~12a!
5-2
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Kn52~2RT0 /p!1/2~AcravL !215 l 0 /L, ~12b!

wheredz5dz1dz2dz3 , Kn is the Knudsen number,l 0 is the
mean free path of the gas molecules in the equilibrium s
at rest with temperatureT0 and densityrav, and F̂ is the
inverse of the Froude number and is a measure of
strength of the external force@l 0 is related to the correspond
ing viscosity m0 and thermal conductivityl0 as m0

5(2/5R)l05(Ap/4)rav(2RT0)1/2l 0 for the BGK model#.
The domain of integration with respect toz i in Eqs.~11a!–
~11c! and in what follows is its whole space unless otherw
specified. On the other hand, the dimensionless form of
boundary condition~4! and ~5! is given by

f̂ 5p23/2r̂w exp~2z i
2! for 6z1.0 at x1571/2,

~13!

r̂w572p1/2E
6z1,0

z1 f̂ ~71/2,z i !dz, ~14!

where the upper~or lower! signs correspond to the conditio
at x1521/2 ~or x151/2!. The boundary-value problem, Eq
~9!–~11c!, ~13!, and~14!, is characterized by the two dimen
sionless parametersF̂ and Kn.

The dimensionless forms of Eqs.~7a!–~7c! are given by

p̂5 r̂T̂, ~15a!

p̂i j 52E ~z i2 v̂ i !~z j2 v̂ j ! f̂ dz, ~15b!

q̂i5E ~z i2 v̂ i !~z j2 v̂ j !
2 f̂ dz. ~15c!

Note thatv̂15 v̂350, p̂135 p̂2350, andq̂350.
If we integrate Eq.~9! multiplied by z1 , z2 , or z j

2 over
the whole space ofz i and further integrate each result wi
respect tox1 , then we are led to the following relations:

p̂115const, ~16a!

p̂1252F̂E
0

x1
r̂dx1 , ~16b!

q̂152E
0

x1
p̂12

dv̂2

dx1
dx1 , ~16c!

where the symmetry of the problem, i.e.,

f̂ ~x1 ,z1 ,z2 ,z3!5 f̂ ~2x1 ,2z1 ,z2 ,z3!, ~17!

which leads top̂12(0)5q̂1(0)50, has been taken into ac
count.

III. ASYMPTOTIC ANALYSIS FOR SMALL KNUDSEN
NUMBERS

In this section we carry out a systematic asympto
analysis of the boundary-value problem~9!–~11c!, ~13!, and
02631
te

e

e
e

c

~14! for small Knudsen numbers, following Refs.@11–19#, in
particular Ref.@12#, as a guideline. To begin with, we assum
that the parameterF̂ for the external force is also small an
of the order of the Knudsen number; that is, we put

F̂5a Kn5~2/Ap!ae, e5~Ap/2!Kn!1, ~18!

wherea is a given constant, ande is a small parameter~of
the order of Kn! that is mainly used in the following
asymptotic analysis. It is known that, in the present proble
this setting of the parameters leads to the~compressible!
Navier-Stokes equation with a uniform external-force term
the continuum limit where Kn~or e! vanishes@1#.

A. Moderately varying solution

First, putting aside the boundary condition~13! and ~14!,
we look for a moderately varying solutionf̂ H to Eqs.~9!–
~11c! satisfying ] f̂ H /]x15O( f̂ H) in the form of a power
series ofe:

f̂ H5 f̂ H01 f̂ H1e1 f̂ H2e21¯. ~19!

This f̂ H is called the Hilbert solution or expansion. Le
r̂H ,T̂H ,v̂2H ,... be themacroscopic quantitiesr̂,T̂,v̂2 ,...
corresponding to the Hilbert solution. Then, they are a
expanded as

hH5hH01hH1e1hH2e21¯ , ~20!

where h representsr̂, v̂2 , T̂, p̂, p̂i j , or q̂i . The explicit
expressions ofhHm in terms of f̂ Hm are obtained by substi
tuting f̂ 5 f̂ H andh5hH in Eqs.~11a!–~11c! and~15a!–~15c!
and by equating the coefficients of the same power ofe @note
thathHm other thanr̂Hm also include the lower-order macro
scopic quantities~r̂Hn , v̂2Hn , T̂Hn , etc. withn,m! because
the relation betweenh and f̂ in Eqs.~11b!, ~11c!, and~15a!–
~15c! is nonlinear#. The explicit expressions ofr̂Hm , v̂2Hm ,
T̂Hm , p̂Hm , p̂i jHm , andq̂iHm for m50, 1, and 2 are given in
Appendix A. Now let us denote byf̂ eH the local Maxwellian
corresponding to the Hilbert solution, i.e.,f̂ e with r̂5 r̂H ,

v̂25 v̂2H , andT̂5T̂H . Then, f̂ eH is also expanded as

f̂ eH5 f̂ eH01 f̂ eH1e1 f̂ eH2e21¯ . ~21!

The explicit form of the coefficientsf̂ eHm for m50, 1, and 2
is given in Appendix B. LetC r(r 50,...,4) stand for the col-
lision invariants, i.e.,

C051, C i5z i ~ i 51,2,3!, C45z j
2. ~22!

Since

E C r~ f̂ H2 f̂ eH!dz50, ~23!

holds, we have
5-3
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E C r~ f̂ Hm2 f̂ eHm!dz50 ~m50,1,...!. ~24!

If we substitute the expansions~19!–~21! into Eq.~9! with
Eq. ~18!, we obtain the following expression off̂ Hm :

f̂ H05 f̂ eH0 , ~25!

f̂ H15 f̂ eH12
1

r̂H0
z1

] f̂ H0

]x1
, ~26!

f̂ Hm5 f̂ eHm1
1

r̂H0
(
s51

m21

r̂Hs~ f̂ eHm2s2 f̂ Hm2s!

2
1

r̂H0
S z1

] f̂ Hm21

]x1
1

2

Ap
a

] f̂ Hm22

]z2
D ~m>2!.

~27!

Equation~24! gives the following compatibility conditions
for Eqs.~26! and ~27!:

E C rz1

] f̂ H0

]x1
dz50, ~28!

E C rS z1

] f̂ Hm21

]x1
1

2

Ap
a

] f̂ Hm22

]z2
D dz50 ~m>2!.

~29!

These conditions are essentially the same as the conserv
equations that led to Eqs.~16a!–~16c!; but in the procedure
of the Hilbert expansion, we put aside the original conser
tion equations. If we use in Eqs.~28! and ~29! the explicit
forms of f̂ Hn (n50,1,...) in terms ofr̂Hs , v̂2Hs , and T̂Hs
(s<n), which are obtained successively from Eqs.~25!–
~27!, we obtain a set of ordinary differential equations for t
macroscopic quantitiesr̂Hn ~or p̂Hn!, v̂2Hn , and T̂Hn ~the
fluid-dynamic-type equations!. More specifically, the equa
tion for p̂H0 follows from Eq.~28! with r 51 (C15z1) @note
that Eq.~28! with r 52 and 4 does not add any new equ
tion#; the set for (p̂Hn11 ,v̂2Hn ,T̂Hn)(n>0) follows from Eq.
~29! with m5n12 and r 51, 2, and 4 (C15z1 ,C2

5z2 ,C45z j
2). Equations~28! and ~29! with r 50 and 3

(C051,C35z3) are automatically satisfied because we
considering a solutionf̂ that gives v̂150 and is an even
function of z3 @see the paragraph after Eq.~5!#. The set of
fluid-dynamic-type equations thus obtained is summarize
the following:

dp̂H0

dx1
50, ~30!

dp̂H1

dx1
50, ~31a!
02631
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dx1
S T̂H0

dv̂2H0

dx1
D1

4

Ap
ar̂H050, ~31b!

5

4

d

dx1
S T̂H0

dT̂H0

dx1
D 1T̂H0S dv̂2H0

dx1
D 2

50, ~31c!

r̂H05 p̂H0 /T̂H0 , ~31d!

d

dx1
F p̂H21

3

2

1

r̂H0

d

dx1
S T̂H0

dT̂H0

dx1
D G50, ~32a!

d

dx1
S T̂H0

dv̂2H1

dx1
1T̂H1

dv̂2H0

dx1
D1

4

Ap
ar̂H150, ~32b!

5

4

d

dx1
S T̂H0

dT̂H1

dx1
1T̂H1

dT̂H0

dx1
D 12T̂H0

dv̂2H0

dx1

dv̂2H1

dx1

1T̂H1S dv̂2H0

dx1
D 2

50, ~32c!

r̂H15~ p̂H12 r̂H0T̂H1!/T̂H0 , ~32d!

d

dx1
H p̂H31

3

2

1

r̂H0
F d

dx1
S T̂H0

dT̂H1

dx1
1T̂H1

dT̂H0

dx1
D

2
r̂H1

r̂H0

d

dx1
S T̂H0

dT̂H0

dx1
D G J 50, ~33a!

d

dx1
S T̂H0

dv̂2H2

dx1
1T̂H1

dv̂2H1

dx1
1T̂H2

dv̂2H0

dx1
D

1
56

Ap

a

r̂H0
S dv̂2H0

dx1
D 2

1
4

Ap
ar̂H250, ~33b!

5

4

d

dx1
S T̂H0

dT̂H2

dx1
1T̂H1

dT̂H1

dx1
1T̂H2

dT̂H0

dx1
D 1T̂H0S dv̂2H1

dx1
D 2

12T̂H1

dv̂2H0

dx1

dv̂2H1

dx1
12T̂H0

dv̂2H0

dx1

dv̂2H2

dx1

1T̂H2S dv̂2H0

dx1
D 2

1
72

25

T̂H0

r̂H0
2 S dv̂2H0

dx1
D 4

2
282

5Ap
a

T̂H0

r̂H0

d2v̂2H0

dx1
2 2

256

p
a250, ~33c!

r̂H25~ p̂H22 r̂H0T̂H22 r̂H1T̂H1!/T̂H0 , ~33d!

where Eqs.~31d!, ~32d!, and ~33d!, which give the expres-
sions ofr̂H0 , r̂H1 , andr̂H2 , respectively, are the equation o
state@see Eqs.~A1d!, ~A2d!, and~A3d!#. Here, some of the
equations are not in the form directly corresponding to E
~28! and~29! because they have been simplified with the a
of other equations of the same stage and of the prev
5-4



th

n

y

ry

e
e
ic

s

rm
in

h

n
se

ng

ion

-

s

POISEUILLE-TYPE FLOW OF A RAREFIED GAS . . . PHYSICAL REVIEW E 65 026315
stages. In order to obtain Eqs.~33a!–~33c!, we need f̂ H3

though the explicit form off̂ eH3 is not given in Appendix B.
In the practical calculations, however, we do not need
explicit form of f̂ eHm because the moment*f(z i) f̂ eHmdz,
wheref(z i) is an arbitrary function ofz i , can be obtained
more easily by calculating*f(z i) f̂ eHdz first and then ex-
panding the result ine.

Substituting the explicit form off̂ Hm (m50,1,...) into
Eqs.~A1e!, ~A1f!, ~A2e!, ~A2f!, ~A3e!, and~A3f!, we obtain
the expressions of the coefficientsp̂i jHm and q̂iHm of the
Hilbert expansion of the stress tensorp̂i j and that of the
heat-flow vectorq̂i in terms ofp̂Hn ~or r̂Hn!, T̂Hn , andv̂2Hn
(n<m). The results form50, 1, and 2 are summarized i
Appendix C. Corresponding to Eqs.~33a!–~33c!, we can also
obtain p̂i jH 3 and q̂iH3 , but we omit the result because the
are rather lengthy.

B. Knudsen-layer correction and slip boundary condition

In the preceding section, we derived the moderately va
ing solution putting aside the boundary condition, Eqs.~13!
and ~14!. Now we try to construct a solution satisfying th
boundary condition. As will be seen, this procedure provid
the appropriate boundary conditions for the fluid-dynam
type equations~30!–~33d!.

We first consider the leading-order termf̂ H0 , which is a
local Maxwellian given by Eqs.~25! and ~B1a!. Let us sup-
pose thatv̂2H0 and T̂H0 in f̂ H0 take the following values on
the walls:

v̂2H050, T̂H051, at x1561/2. ~34!

Then, it is easily verified thatf̂ H0 , with an arbitraryr̂H0 ,
satisfies the boundary condition, Eqs.~13! and~14!. The con-
dition ~34! gives the consistent boundary condition for Eq
~31b!–~31d!.

We next consider the first-order termf̂ H1 given by Eq.
~26!. By the substitution of Eqs.~25!, ~B1a!, and ~B1b! in
Eq. ~26!, it is seen thatf̂ H1 is of the form of f̂ eH0 multiplied
by a polynomial ofz i , the highest-order term of which is

2
1

r̂H0T̂H0
2

dT̂H0

dx1

z1z j
2.

In order for f̂ H1 to fit to the boundary condition, all the
coefficients of the polynomial, except the constant te
should vanish on the boundary. However, these constra
lead to the additional conditionsdv̂2H0 /dx15dT̂H0 /dx1
50 on the walls. These conditions and Eq.~34! are too many
for Eqs.~31b!–~31d! to be solvable. Therefore,f̂ H1 does not
contain the freedom to satisfy the boundary condition. T
situation is the same for the higher-order termsf̂ Hm
(m>2). To obtain the solution satisfying the boundary co
dition, therefore, we need to introduce the so-called Knud
layers.

Let us seek the solution in the form
02631
e

-

s
-

.

,
ts

e

-
n

f̂ 5 f̂ H1 f̂ K , ~35!

with

f̂ K5 f̂ K1e1 f̂ K2e21¯ . ~36!

Here, f̂ K is the correction to the Hilbert solutionf̂ H appre-
ciable only in the thin layers of thickness of the order ofe ~or
of the mean free path in the dimensionalX1 variable! adja-
cent to the walls~Knudsen layers!. The expansion~36! is
started frome order becausef̂ H0 could satisfy the boundary
condition.

The Knudsen layer atx1521/2 and that atx151/2 are
symmetric with respect to thex2 axis. To analyze these two
Knudsen layers in a unified way, we introduce the followi
variables:

y5x111/2, h5y/e, zy5z1 , ~37!

near the wall atx1521/2 and

y51/22x1 , h5y/e, zy52z1 , ~38!

near the wall atx151/2. Here,y is the normal coordinate
measured from the wall toward the gas,h is the stretched
normal coordinate, andzy is the component ofz i in the posi-
tive y direction. We suppose that the length scale of variat
of f̂ K is e, i.e.,

f̂ K5 f̂ K~h,zy ,z2 ,z3!, ~39!

or ] f̂ K /]h5O( f̂ K), and thatf̂ K vanishes rapidly ash→`.
Corresponding to Eqs.~35! and~36!, the macroscopic quan
tity h, whereh representsr̂, v̂2 , T̂, p̂, p̂i j , or q̂i as before, is
expressed as

h5hH1hK , ~40!

hK5hK1e1hK2e21¯ . ~41!

The expressions ofhKm (m51,2,...) in terms off̂ Km are
obtained as follows. We first substitute Eq.~35! @with Eqs.
~19! and ~36!# and Eq.~40! @with Eqs. ~20! and ~41!# into
Eqs. ~11a!–~11c! and ~15a!–~15c! and express the integral
of f̂ Hm in terms ofhHn (n<m) using the relations~A1a!–
~A3f !. We then expand eachhHn in the Taylor series around
the boundary (y50) as

hHn5~hHn!B1S dhHn

dy D
B

he1
1

2 S d2hHn

dy2 D
B

h2e21¯ ,

~42!

where ( )B indicates the value on the wall~i.e., at y50 or
h50!. If we equate the coefficients of the same power ofe,
we obtain the desired expression. The explicit form ofr̂Km ,

v̂2Km , T̂Km , p̂i jKm , and q̂iKm for m51 and 2 is given in
Appendix D.

Now we insert Eqs.~35! into Eqs.~9!–~11c! with Eq. ~18!

and take into consideration the length scale of variation off̂ K
5-5



-

n-
-

KAZUO AOKI, SHIGERU TAKATA, AND TOSHIYUKI NAKANISHI PHYSICAL REVIEW E 65 026315
as well as the fact thatf̂ H is a solution of Eqs.~9!–~11c!.
Then, we obtain the following equation forf̂ K @here, the
expansions~19! and ~36! have not been used yet#:

zy

] f̂ K

]h
1

2

Ap
ae2

] f̂ K

]z2
5~ r̂H1 r̂K!@~ f̂ e!H1K2 f̂ eH2 f̂ K#

1 r̂K~ f̂ eH2 f̂ H!, ~43!

where (f̂ e)H1K stands for f̂ e @Eq. ~10!# with r̂5 r̂H1 r̂K ,

v̂25 v̂2H1 v̂2K , andT̂5T̂H1T̂K . If we substitute the expan
sions ~19! ~with the explicit form of f̂ Hm!, ~20!, ~36!, and
~41! and use Eq.~42! as well as the corresponding expa
sions for thex1 derivatives ofhHn , then we obtain the se
quence of equations forf̂ Km .

On the other hand, the boundary condition forf̂ K follows
from Eqs.~13! and ~14! with Eq. ~35!, that is,

~ f̂ K!B5p23/2r̂w exp~2z2!2~ f̂ H!B for zy.0,
~44a!

r̂w522p1/2E
zy,0

zy@~ f̂ H!B1~ f̂ K!B#dz, ~44b!

on the boundary (h50), where

z25zy
21z2

21z3
2, dz5dzydz2dz3 . ~45!

Then, substitution of the expansions~19! @with the explicit
forms of f̂ Hm and the condition~34! for f̂ H0# and~36! in Eqs.
~44a! and ~44b! leads to the boundary condition forf̂ Km .

Now let us put

f̂ Km5~ r̂H0!BEFm ~m51 and 2!,
~46a!

E5p23/2exp~2z2!,

y5y8/~ r̂H0!B , h5h8/~ r̂H0!B. ~46b!

Then, the equations and boundary conditions forf̂ K1 and f̂ K2
can be summarized as follows:

zy

]Fm

]h8
5LBGK~Fm!1I m , ~47a!

Fm522z2~ v̂2Hm!B2~z222!~ T̂Hm!B

22ApE
zy,0

zyFmEdz1Jm

~ for zy.0, at h850!, ~47b!

Fm→0 ~rapidly! ~as h8→`!, ~47c!

wherem51 and 2, andLBGK is the linearized BGK collision
operator defined by
02631
LBGK~f!5E @112z2z̄21 2
3 ~z22 3

2 !~ z̄ 22 3
2 !#

3f~h8,z̄y ,z̄2 ,z̄3!E~ z̄ !dz̄2f, ~48!

with z̄25 z̄y
21 z̄2

21 z̄3
2 anddz̄5dz̄ydz̄2dz̄3 . The explicit ex-

pressions of the termsI m andJm are given by

I 150, ~49a!

I 252z2S z22
5

2D F ~ v̂2H1!B1S dv̂2H0

dy8 D
B

h81
1

2
v̂2K1G T̂K1

12z2S z22
5

2D F ~ T̂H1!B1S dT̂H0

dy8
D

B

h81
1

2
T̂K1G v̂2K1

2
4

3
~z223z2

2!F ~ v̂2H1!B1S dv̂2H0

dy8 D
B

h81
1

2
v̂2K1G v̂2K1

1S z425z21
15

4 D F ~ T̂H1!B1S dT̂H0

dy8
D

B

h81
1

2
T̂K1G T̂K1

1LBGK~F1!~ r̂H0!B
21F ~ r̂H1!B1S dr̂H0

dy8 D
B

h81 r̂K1G
1zyF S z22

5

2D S dT̂H0

dy8
D

B

12z2S dv̂2H0

dy8 D
B
G r̂K1

~ r̂H0!B
,

~49b!

J152zyz2S dv̂2H0

dy8 D
B

1zyS z22
5

2D S dT̂H0

dy8
D

B

, ~50a!

J252
1

2
~z425z214!~ T̂H1!B

22~z222!

3~ r̂H0!B
21~ r̂H1!B~ T̂H1!B2~2z2

221!~ v̂2H1!B
2

22z2~ v̂2H1!BF S z22
5

2D ~ T̂H1!B1
~ r̂H1!B

~ r̂H0!B
G1zyH S z2

2
5

2D S dT̂H1

dy8
D

B

12z2S dv̂2H1

dy8 D
B

1F S z426z21
25

4 D
3~ T̂H1!B12z2S z22

7

2D ~ v̂2H1!BG S dT̂H0

dy8
D

B

1F2z2S z2

2
5

2D ~ T̂H1!B12~2z2
221!~ v̂2H1!BG S dv̂2H0

dy8 D
B
J

2zy
2F S z427z21

35

4 D S dT̂H0

dy8
D

B

2

14S z2
22

1

5
z2D

3S dv̂2H0

dy8 D
B

2

14z2S z22
7

2D S dT̂H0

dy8
D

B
S dv̂2H0

dy8 D
B
G

5-6
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2
1

4
S dT̂H0

dy8
D

B

2

2
2

5 S dv̂2H0

dy8 D
B

2

1
4

Ap

a

~r̂H0!B
z2~2zy

221!.

~50b!

The problem~47a!–~47c! for Fm is a one-dimensiona
boundary-value problem~half-space problem! of the linear-
ized BGK equation. This problem with generalI m and Jm
@i.e., I m and Jm that are not restricted to the forms of Eq
~49a!–~50b!# has the following property. For given
I m(h8,zy ,z2 ,z3) that vanishes rapidly ash8→` and
Jm(zy ,z2 ,z3), the solutionFm is determined together with
the constants (v̂2Hm)B and (T̂Hm)B contained in the boundar
condition ~47b!. The boundary values (v̂2H1)B and (T̂H1)B
thus determined give the boundary condition for the flu
dynamic-type equations~32b!–~32d!, and those (v̂2H2)B and
(T̂H2)B give the boundary condition for Eqs.~33b!–~33d!.

The property of the problem~47a!–~47c! described in the
preceding paragraph is also true for the linearized Boltzm
equation, i.e., Eq.~47a! with LBGK replaced by the linearized
Boltzmann collision operator. Grad@22# conjectured the ex-
istence and uniqueness of the solution and the constan
the boundary condition@( v̂Hm)B and (T̂Hm)B#. Grad’s conjec-
tured theorem was later proved by Bardos, Caflisch,
Nicolaenko@23# for hard-sphere molecules and by Cerc
nani @24# and by Golse and Poupaud@25# for more general
molecular models. The reader is referred to Refs.@16#, @18#,
@19# for further discussions about the theorem.

In the actual calculation, we can obtain the solution
Eqs.~47a!–~47c! in the form

Fm5Fm
o 1Fm

e , ~51!

whereFm
o is odd inz2 , andFm

e is even inz2 . In view of the
explicit form of I m andJm , we can put

F F1
o

~ v̂2H1!B
G5Fc1a

b1a
G S dv̂2H0

dy8 D
B

, ~52a!

F F1
e

~ T̂H1!B
G5F c̃1a

b̃1a
G S dT̂H0

dy8
D

B

, ~52b!

F F2
o

~ v̂2H2!B
G5Fc2a

b2a
G S dv̂2H1

dy8 D
B

1Fc2b

b2b
G ~ r̂H1!B

~ r̂H0!B
S dv̂2H0

dy8 D
B

1Fc2c

b2c
G S dv̂2H0

dy8 D
B

S dT̂H0

dy8
D

B

1Fc2d

b2d
G a

~r̂H0!B
,

~53a!

F F2
e

~ T̂H2!B
G5F c̃2a

b̃2a
G S dT̂H1

dy8
D

B

1F c̃2b

b̃2b
G ~ r̂H1!B

~ r̂H0!B
S dT̂H0

dy8
D

B

1F c̃2c

b̃2c
G S dT̂H0

dy8
D

B

2

1F c̃2d

b̃2d
G S dv̂2H0

dy8 D
B

2

, ~53b!
02631
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n

in

d

wherec1a ,c2a ,...,c2d are odd inz2 ,c̃1a ,c̃2a ,...,c̃2d are
even inz2 , and b1a ,b2a ,...,b2d and b̃1a ,b̃2a ,...,b̃2d are
constants. In deriving the form of Eqs.~53a! and ~53b!, we
have used the form~52a! and ~52b! in I 2 andJ2 . Then, we
analyze each decomposed problem to determine (c1a ,b1a),
(c̃1a ,b̃1a), (c2a ,b2a), (c̃2a ,b̃2a), etc. numerically by a
finite-difference method. OnceF1 and F2 are determined,
we can calculate the Knudsen-layer part of the macrosco
variables by using Eqs.~D1a!–~D2i!. Here, we summarize
the boundary conditions for Eqs.~32b!–~32d! and ~33b!–
~33d! and the Knudsen-layer parts of the flow velocity, de
sity, and temperature thus obtained, using the original co
dinatey rather thany8.

The boundary condition for Eqs.~32b!–~32d! on the walls
(y50) is @note Eqs.~37! and~38! for the relation betweeny
andx1#

~ v̂2H1!B5b1a

1

~ r̂H0!B
S dv̂2H0

dy D
B

, ~54a!

~ T̂H1!B5b̃1a

1

~ r̂H0!B
S dT̂H0

dy
D

B

, ~54b!

b1a51.016 19, b̃1a51.302 72. ~54c!

The boundary condition for Eqs.~33b!–~33d! on the walls is

~ v̂2H2!B5b2a

1

~ r̂H0!B
S dv̂2H1

dy D
B

1b2b

~ r̂H1!B

~ r̂H0!B
2 S dv̂2H0

dy D
B

1b2c

1

~ r̂H0!B
2 S dv̂2H0

dy D
B

S dT̂H0

dy
D

B

1b2d

a

~r̂H0!B
,

~55a!

~ T̂H2!B5b̃2a

1

~ r̂H0!B
S dT̂H1

dy
D

B

1b̃2b

~ r̂H1!B

~ r̂H0!B
2 S dT̂H0

dy
D

B

1b̃2c

1

~ r̂H0!B
2 S dT̂H0

dy
D

B

2

1b̃2d

1

~ r̂H0!B
2 S dv̂2H0

dy D
B

2

,

~55b!

b2a5b1a , b2b521.016 19, b2c520.831 03,

b2d51.729 42,

b̃2a5b̃1a , b̃2b521.302 71, b̃2c521.393 17,

b̃2d51.161 72. ~55c!

The Knudsen-layer parts of the flow velocity, density, a
temperature are given by

v̂2K15Ya~h8!
1

~ r̂H0!B
S dv̂2H0

dy D
B

, ~56a!
5-7



36 20
1.085 91
0.992 11
0.854 79
0.752 07
0.669 78
0.601 46

0.002 34

KAZUO AOKI, SHIGERU TAKATA, AND TOSHIYUKI NAKANISHI PHYSICAL REVIEW E 65 026315
TABLE I. Knudsen-layer functions.

h8 Va 2Ua 2Ya 2Vb Ub Yb 2Vc Uc Yc Vd 2Ud 2Yd

0.0 0.347 72 0.449 21 0.309 0920.000 02 0.449 19 0.309 08 1.305 35 0.956 99 0.527 59 0.092 25 0.449 00 1.2
0.05 0.291 77 0.385 21 0.257 27 0.036 77 0.428 83 0.291 97 1.277 15 0.935 87 0.520 43 0.064 83 0.405 95
0.1 0.261 21 0.348 42 0.228 28 0.051 74 0.411 60 0.277 57 1.256 59 0.913 30 0.508 79 0.049 99 0.376 16
0.2 0.219 87 0.297 04 0.188 78 0.067 32 0.382 15 0.253 19 1.218 36 0.869 35 0.483 98 0.030 73 0.330 65
0.3 0.190 96 0.260 06 0.161 14 0.075 00 0.357 02 0.232 69 1.181 14 0.827 52 0.459 38 0.018 22 0.295 56
0.4 0.168 77 0.231 14 0.140 03 0.078 97 0.334 93 0.214 92 1.144 38 0.787 79 0.435 66 0.009 41 0.266 90
0.5 0.150 91 0.207 52 0.123 16 0.080 86 0.315 15 0.199 23 1.108 07 0.750 06 0.413 02 0.002 97 0.242 77
0.6 0.136 10 0.187 70 0.109 29 0.081 46 0.297 24 0.185 23 1.072 30 0.714 22 0.391 5020.001 82 0.222 04 0.543 45
0.7 0.123 55 0.170 75 0.097 64 0.081 23 0.280 88 0.172 62 1.037 15 0.680 15 0.371 0920.005 42 0.203 98 0.493 44
0.8 0.112 75 0.156 06 0.087 72 0.080 43 0.265 84 0.161 18 1.002 72 0.647 76 0.351 7520.008 12 0.188 08 0.449 80
0.9 0.103 34 0.143 18 0.079 18 0.079 25 0.251 95 0.150 76 0.969 05 0.616 96 0.333 4520.010 15 0.173 95 0.411 39
1.0 0.095 06 0.131 80 0.071 74 0.077 79 0.239 07 0.141 22 0.936 20 0.587 65 0.316 1220.011 65 0.161 32 0.377 32
1.2 0.081 17 0.112 57 0.059 47 0.074 40 0.215 89 0.124 39 0.873 04 0.533 20 0.284 2020.013 49 0.139 67 0.319 68
1.4 0.069 98 0.096 99 0.049 82 0.070 67 0.195 60 0.110 02 0.813 36 0.483 84 0.255 6220.014 27 0.121 83 0.272 95
1.6 0.060 79 0.084 15 0.042 08 0.066 83 0.177 69 0.097 65 0.757 19 0.439 06 0.230 0220.014 38 0.106 92 0.234 53
1.8 0.053 14 0.073 43 0.035 79 0.063 01 0.161 79 0.086 93 0.704 46 0.398 41 0.207 0720.014 06 0.094 32 0.202 58
2.0 0.046 70 0.064 39 0.030 62 0.059 29 0.147 60 0.077 59 0.655 06 0.361 50 0.186 5020.013 47 0.083 56 0.175 77
2.5 0.034 41 0.047 16 0.021 17 0.050 64 0.118 15 0.058 92 0.545 26 0.283 31 0.143 8120.011 46 0.062 70 0.125 24
3.0 0.025 87 0.035 19 0.014 97 0.043 06 0.095 33 0.045 23 0.453 04 0.221 69 0.111 1420.009 30 0.047 88 0.090 86
3.5 0.019 73 0.026 65 0.010 77 0.036 54 0.077 39 0.035 01 0.375 94 0.173 09 0.086 0520.007 33 0.037 06 0.066 86
4.0 0.015 23 0.020 41 0.007 87 0.030 97 0.063 13 0.027 28 0.311 68 0.134 74 0.066 7420.005 67 0.028 99 0.049 76
5.0 0.009 31 0.012 30 0.004 33 0.022 22 0.042 52 0.016 85 0.213 81 0.080 64 0.040 2920.003 24 0.018 18 0.028 32
6.0 0.005 84 0.007 62 0.002 47 0.015 95 0.029 00 0.010 59 0.146 40 0.047 10 0.024 4120.001 74 0.011 69 0.016 58
8.0 0.002 43 0.003 10 0.000 86 0.008 25 0.013 86 0.004 35 0.068 34 0.013 91 0.009 0020.000 38 0.005 09 0.006 05

10.0 0.001 07 0.001 33 0.000 32 0.004 29 0.006 81 0.001 86 0.031 71 0.002 11 0.003 30 0.000 01 0.002 32
f
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F r̂K1 /~ r̂H0!B

T̂K1
G5FVa~h8!

Ua~h8!G 1

~ r̂H0!B
S dT̂H0

dy
D

B

, ~56b!

v̂2K25Ya~h8!
1

~ r̂H0!B
S dv̂2H1

dy D
B

1Yb~h8!
~ r̂H1!B

~ r̂H0!B
2 S dv̂2H0

dy D
B

1Yc~h8!
1

~ r̂H0!B
2 S dv̂2H0

dy D
B

S dT̂H0

dy
D

B

1Yd~h8!
a

~ r̂H0!B
, ~57a!

F r̂K2 /~ r̂H0!B

T̂K2
G5FVa~h8!

Ua~h8!G 1

~ r̂H0!B
S dT̂H1

dy
D

B

1FVb~h8!

Ub~h8!G ~ r̂H1!B

~ r̂H0!B
2 S dT̂H0

dy
D

B

1FVc~h8!

Uc~h8!G 1

~ r̂H0!B
2 S dT̂H0

dy
D

B

2

1FVd~h8!

Ud~h8!G 1

~ r̂H0!B
2 S dv̂2H0

dy D
B

2

, ~57b!
02631
whereh8 @Eq. ~46b!# rather thanh is used as the variable o
the functionsYa , Va , Ua , etc. These are universal func
tions of h8 only, which we call Knudsen-layer functions
These functions are shown in Table I. The relationsb1a5

2b2b and b̃1a52b̃2b are likely to hold; the differences
would be attributed to the numerical error. But the cor
sponding Knudsen-layer functions are different.

Some of the slip coefficients, Eqs.~54c! and ~55c!, and
the Knudsen-layer functions occurring in Eqs.~56a!–~57b!
are those obtained earlier@11,12,26–29# ~see also Refs.@17–
19#!. For instance,

@b1a ,Ya~x!#5@k1 ,D1~x!# ~Ref.@12# !

5@2k0 ,2Y0~x!# ~Refs.@17– 19# and @29# !,

~58a!

@b̃a ,Va~x!,Ua~x!#5@a1 ,V1~x!,U1~x!# ~Ref.@12# !

5@d1 ,V1~x!,U1~x!#

(Refs.@17– 19# and @29#), ~58b!

where the variablex is commonly used as the independe
variable of the Knudsen-layer functions. In these ear
works, the Knudsen-layer problems, represented by the f
of Eqs. ~47a!–~47c!, are first transformed into the integra
equations for the Knudsen-layer parts of the macrosco
5-8



a

i-

th

-
th

id

-
is
e

e
ke
E

rd
nd

t
-

m
t
2/

al

e
e
n
qs

POISEUILLE-TYPE FLOW OF A RAREFIED GAS . . . PHYSICAL REVIEW E 65 026315
quantitiesv̂2Km , r̂Km , andT̂Km . This transformation can be
made by writingLBGK(Fm) in terms of v̂2Km , r̂Km , and
T̂Km @see Eqs.~D1a!–~D1c! and ~D2a!–~D2c!#, by integrat-
ing Eq. ~47a! formally under Eqs.~47b! and ~47c!, and then
by substituting the resultingFm into the definition ofv̂2Km ,
r̂Km , andT̂Km . The integral equations are then solved by
moment method devised by Sone@26,27# and improved by
Sone and Onishi@28,29#. However, since the direct numer
cal solution of Eqs. ~47a!–~47c! by a finite-difference
method is rather easy nowadays, we made use of this me
here ~see the last paragraph in Sec. IV A!. Incidentally,
(b1a ,Ya) and (b̃1a ,Va ,Ua) are obtained also for a hard
sphere gas by means of an accurate finite-difference me
for the linearized Boltzmann equation:@b1a ,Ya(x)#

5@bA ,S(x)# in Ref. @30# and @b̃1a ,Va(x),Ua(x)#
5@b,V(x),U(x)# in Ref. @31#.

C. Flow properties at small Knudsen numbers

In the preceding sections, we have derived the flu
dynamic-type equations~30!–~33d!, their boundary condi-
tions ~34! and ~54a!–~55c!, and the Knudsen-layer correc
tions ~56a!–~57b! for the macroscopic quantities. In th
section, we discuss the flow properties for small Knuds
numbers on the basis of these results.

We first compare the fluid-dynamic-type equations~30!–
~33d! with the ~compressible! Navier-Stokes equations, mor
precisely, the equations obtained from the Navier-Sto
equations by means of the expansion corresponding to
~19! @note that the viscositym5(T/T0)m0 and the thermal
conductivity l5(T/T0)l0 , which correspond to the BGK
model ~see the first paragraph in Sec. II C form0 and l0!,
should be used together with the relation~18!#. Equation~30!
is the degenerated Euler equation, and Eqs.~31a!–~31d! are
the same as the Navier-Stokes equations. The next-o
equations~32b!–~32d! are also the same as the correspo
ing Navier-Stokes equations, whereas the second term in
square brackets in Eq.~32a! is not contained in the Navier
Stokes equations. In Eqs.~33a!–~33c!, many non-Navier-
Stokes terms appear, i.e., the terms other than the first ter
the curly brackets of Eq.~33a!, the term with the coefficien
56/Ap in Eq. ~33b!, and the terms with the coefficients 7
25, 2282/5Ap, and2256/p in Eq. ~33c!.

In Figs. 1–3, we show the solutionsr̂Hm , v̂2Hm , andT̂Hm
~m50, 1, and 2! of the fluid-dynamic systems for sever
values ofa @cf. Eq. ~18!#. More specifically, the solution to
Eqs.~30! and~31b!–~31d! with the nonslip condition~34! is
shown in Fig. 1, that to Eqs.~31a! and~32b!–~32d! with the
slip condition ~54a!–~54c! in Fig. 2, and that to Eqs.~32a!
and ~33b!–~33d! with the slip condition~55a!–~55c! in Fig.
3. Since these solutions are symmetric with respect to thx2
axis, the right half (0<x1<0.5) is shown in the figures. Th
results shown in the figures are the numerical solutio
Here, the density is normalized as follows. If we use E
~40!, ~20!, and~41! with h5 r̂ in the definition ofrav, i.e.,

rav5
1

L E
2L/2

L/2

rdX152ravE
0

1/2

r̂dx1 , ~59!
02631
od

od

-

n

s
q.

er
-
he

in

s.
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and recall thatr̂K is the function ofh, then we have

E
0

1/2

r̂H0dx15
1

2
, ~60a!

E
0

1/2

r̂H1dx150, ~60b!

E
0

1/2

r̂H2dx152E
0

`

r̂K1dh. ~60c!

These are the normalization conditions.

FIG. 1. The solutionr̂H0 , v̂2H0 , andT̂H0 for variousa. ~a! r̂H0 ,

~b! v̂2H0 , ~c! T̂H0 .
5-9
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Figures 4–6 show the profiles of the densityr, flow ve-
locity v2 , and temperatureT for a51, 2, and 3~i.e., F̂
5Kn, 2Kn, and 3Kn! in the right half (0<X1 /L<0.5) of
the gap. Here, the solid line indicates the asymptotic solu
up to the order ofe2 ~or Kn2!, i.e., h5hH01(hH11hK1)e
1(hH21hK2)e2 with h5 r̂, v̂2 , or T̂, whereas the dashe
line the corresponding numerical solution of the origin
BGK model obtained by means of a finite-difference meth
on which we will comment in the next section. The dime
sional variables rather than the dimensionless counterp
are used in Figs. 4–6@cf. Eq. ~8!#. For a52 and 3, the
discrepancy between the asymptotic and numerical solut

FIG. 2. The solutionr̂H1 , v̂2H1 , andT̂H1 for variousa. ~a! r̂H1 ,

~b! v̂2H1 , ~c! T̂H1 .
02631
n

l
,

-
rts

ns

is appreciable in the figures at Kn50.1, though their relative
difference is still small~less than one percent!. There are two
reasons for this discrepancy. First, fora>2, the second-
order Hilbert solution shown in Fig. 3 becomes large in ma
nitude compared with the leading and first-order solutio
shown in Figs. 1 and 2. Second, the decay of the seco
order Knudsen-layer functions is rather slow~see Table I!,
and further the magnitude of the second-order Knudsen-la
corrections in Eqs.~57a! and ~57b! becomes large becaus
they contain the square terms of (dv̂2H0 /dy)B and
(dT̂H0 /dy)B , which are large for largera. Therefore, the
Knudsen layer, which should be confined near the wall th

FIG. 3. The solutionr̂H2 , v̂2H2 , andT̂H2 for variousa. ~a! r̂H2 ,

~b! v̂2H2 , ~c! T̂H2 .
5-10
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POISEUILLE-TYPE FLOW OF A RAREFIED GAS . . . PHYSICAL REVIEW E 65 026315
retically, almost reaches the center of the gap at Kn50.1.
These two facts restrict the validity of the asymptotic exp
sion to rather small values of Kn.

The numerical data corresponding to the temperature
file in Figs. 4–6 show that it is of a bimodal shape with
very slight local minimum at the center of the gap (X1
50). This fact has been discussed in earlier works@2–7#
~see Sec. I!. To see this more clearly, we show in Fig.
magnified figures of the temperature profile in the cen
part of the gap in the case of Fig. 6~c! ~i.e., a53!. Such a

FIG. 4. The profiles of the densityr , flow velocity v2 , and
temperatureT for Kn50.02, 0.05, and 0.1 in the case ofa51 @cf.
Eq. ~18!#. ~a! r, ~b! v2 , ~c! T. The solid line indicates the
asymptotic solution up to the order of Kn2, and the dashed line th
numerical solution of the original BGK system. These two lines
indistinguishable for Kn50.02.
02631
-

o-

l

bimodal shape is not observed in the solution up to the fi
order, i.e.,T̂5T̂H01(T̂H11T̂K1)e. Therefore, it is a second
order effect. The presence of the local minimum atX150
can be shown analytically. Because of the symmetry of
flow field with respect to thex2 axis @Eq. ~17!#, we have
d2k11v̂2Hm /dx1

2k115d2k11T̂Hm /dx1
2k1150 at x150 (k

50,1,...). Therefore, Eqs.~31b!, ~31c! and ~32c! give, re-
spectively, (d2v̂2H0 /dx1

2)x15052(4/Ap)ar̂H0(0)/T̂H0(0),

(d2T̂H0 /dx1
2)x15050, and (d2T̂H1 /dx1

2)x15050. Then, it

follows from Eq. ~33c! that (d2T̂H2 /dx1
2)x150

5608a2/25pT̂H0(0). In summary, we have

e

FIG. 5. The profiles of the densityr, flow velocity v2 , and
temperatureT for Kn50.02, 0.05, and 0.1 in the case ofa52 @cf.
Eq. ~18!#. ~a! r, ~b! v2 , ~c! T. See the caption of Fig. 4.
5-11
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S dT̂

dx1
D

x150

50,

~61!

S d2T̂

dx1
2D

x150

5
608

25p

1

T̂~0!
a2e21O~e3!.0.

That is, the presence of the local minimum is attributed
the solution of the second-order fluid-dynamic-type eq
tions ~see Fig. 3!. Equation~61! coincides with the resul
obtained by Tij and Santos@2# ~see also Ref.@4#!.

FIG. 6. The profiles of the densityr, flow velocity v2 , and
temperatureT for Kn50.02, 0.05, and 0.1 in the case ofa53 @cf.
Eq. ~18!#. ~a! r, ~b! v2 , ~c! T. See the caption of Fig. 4.
02631
o
-

The nontrivial componentsp11, p22, p33, andp12 of the
stress tensor and thoseq1 andq2 of the heat-flow vector for
a51, 2, and 3 in the right half of the gap are shown in Fig
8–10. As in Figs. 4–7, the solid line indicates the asympto
solution up to the order ofe2 ~or Kn2!, i.e., h5hH01(hH1
1hK1)e1(hH21hK2)e2 with h5 p̂i j or q̂i , whereas the
dashed line the corresponding numerical solution of
original BGK system. The dimensional variables are us
also in Figs. 8–10@cf. Eq. ~8!#. The p11 is constant@Eq.
~16a!#, and its Knudsen-layer part vanishes identically~see

FIG. 7. The temperature profile in the central part of the gap
a53 @cf. Fig. 6~c!#. ~a! Kn50.02,~b! Kn50.05,~c! Kn50.1. The
solid line indicates the asymptotic solution up to the order of K2,
and the dashed line the numerical solution of the original BG
system.
5-12



n,
-
e

rm

e
e

d
qs

x

o

on
in
w
s-

lu-
-

r

s

to
he
fo

ss

POISEUILLE-TYPE FLOW OF A RAREFIED GAS . . . PHYSICAL REVIEW E 65 026315
Appendix D!. As is seen from Eq.~16b!, p12/RravT056F̂
56aKn at X1 /L561/2. For the Navier-Stokes equatio
the normal stressesp̂11, p̂22, and p̂33 are equal to the pres
sure p̂, which is uniform, and there is no heat flow in th
direction parallel to the walls (q̂250). In contrast, in the
order of Kn2, the pressure is not uniform@see Eq.~32a!#, the
normal stresses, which contain non-Navier-Stokes terms@the
terms containingT̂H0 andv̂2H0 in Eqs.~C3a!–~C3c!#, are not
isotropic, and the heat flow parallel to the walls appear@see
Eq. ~C6b!#. These non-Navier-Stokes terms are of the fo
contained in the Burnett approximation@32# of the stress and
heat flow. For the shear stressp̂12 and the heat flowq̂1 per-
pendicular to the walls, the non-Navier-Stokes terms app
in the order of Kn3 ~as mentioned in the end of Sec. III A, th
explicit expressions ofp̂i jH 3 and q̂iH3 are omitted in this
paper!. These non-Navier-Stokes terms are not containe
the Burnett approximation. Therefore, it turns out that E
~33b! and~33c!, which include the contribution ofp̂12H3 and
q̂1H3 , are affected by the terms beyond the Burnett appro
mation. As is seen from Figs. 8~f!, 9~f!, and 10~f!, the heat
flow q̂2 parallel to the walls changes its sign depending

FIG. 8. The profiles of the nontrivial components of the stre
tensorpi j and the heat-flow vectorqi for Kn50.02, 0.05, and 0.1 in
the case ofa51 @cf. Eq. ~18!#. ~a! p11, ~b! p22, ~c! p33, ~d! p12,
~e! q1 , ~f! q2 . The solid line indicates the asymptotic solution up
the order of Kn2, and the dashed line the numerical solution of t
original BGK system. These two lines are indistinguishable
Kn50.02.
02631
ar

in
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n

the position in the gas. More specifically, it is in the directi
of the gas flow near the walls but in the opposite direction
the middle. Similar change of the direction of the heat flo
was noted in the ordinary Poiseuille flow driven by the pre
sure gradient@33#.

We now give a short comment on the perturbation so
tion by Tij and Santos@2#. We have given some of the de
rivatives of v̂2Hm and T̂Hm at x150 before Eq.~61!. In ad-
dition, d2k11p̂Hm /dx1

2k1150 holds at x150 (k50,1,...),

and we obtain (d2p̂H2 /dx1
2)x1505192a2r̂H0(0)/5pT̂H0(0)

from Eq. ~32a!. These results lead to the following Taylo
series expansions ofv̂2 , T̂, and p̂ aroundx150 when ux1u
&e.

v̂25 v̂2~0!2
2

Ap

r̂~0!

T̂~0!

ax1
21O~e3!, ~62a!

T̂5T̂~0!2
16

15p

1

T̂~0!
F r̂~0!2

T̂~0!
x1

22
57

5
e2Ga2x1

21O~e5!,

~62b!

s

r

FIG. 9. The profiles of the nontrivial components of the stre
tensorpi j and the heat-flow vectorqi for Kn50.02, 0.05, and 0.1 in
the case ofa52 @cf. Eq. ~18!#. ~a! p11, ~b! p22, ~c! p33, ~d! p12,
~e! q1 , ~f! q2 . See the caption of Fig. 8.
5-13
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p̂5 p̂~0!1
96

5p

r̂~0!

T̂~0!
a2e2x1

21O~e5!. ~62c!

By a careful comparison, one can show that these res
coincide withu(1)(s)F, 11T(2)(s)F2, and 11p(2)(s)F2 in
Ref. @2#, respectively@cf. Eqs.~29!–~31!, ~33!, ~36!, and~37!
in Ref. @2##, if the higher-order terms are neglected. The
fore, it is most probable that the perturbation solution by
and Santos corresponds to the Taylor series expansion o
Hilbert ~or normal! solution around the center of the ga
which is valid only in the vicinity of the center. Essential
the same agreement is observed for the stress tensor as
as the heat-flow vector. They were able to obtain high
order terms, but their analysis cannot give any informat
about the valuesv̂2(0), T̂(0), and p̂(0) at the center. Fur-
thermore, it should be emphasized that the Hilbert solut
can be regarded as a part of the solution of the bound
value problem under consideration only when it can be c
sistently matched with the boundary condition through
Knudsen layer. In this sense, the present analysis would
tify Tij and Santos’ solution as a correct local solution ne
the center of the gap. They extended their analysis to the
of a circular pipe recently in Ref.@34#, where the result for

FIG. 10. The profiles of the nontrivial components of the str
tensorpi j and the heat-flow vectorqi for Kn50.02, 0.05, and 0.1 in
the case ofa53 @cf. Eq. ~18!#. ~a! p11, ~b! p22, ~c! p33, ~d! p12,
~e! q1 , ~f! q2 . See the caption of Fig. 8.
02631
lts

-
j
the

ell
r-
n

n
y-
-

e
s-
r
se

the flow between two plates is also summarized in a m
tractable form than in Ref.@2#.

As mentioned earlier, the present analysis completely
lows the procedure of the asymptotic theory by Sone a
co-workers@11–19#. Esposito, Lebowitz, and Marra@1# used
a similar procedure to investigate the present problem
small e in the case of the Boltzmann equation for har
sphere molecules. Their aim is to clarify the mathemati
structure of the solution rather than to obtain the flow fie
explicitly. They were able to obtain the estimates of the e
panded terms and the remainder of the velocity distribut
function and to show the convergence of the solution of
Boltzmann equation to that of the Navier-Stokes equation
the continuum limite→0.

IV. NUMERICAL ANALYSIS FOR INTERMEDIATE
KNUDSEN NUMBERS

In Sec. III B, we have already analyzed the Knudsen-la
problem ~47a!–~47c! numerically by a finite-difference
method. In addition, in Figs. 4–10, we have presented so
numerical solutions of the original system, Eqs.~9!–~11c!,
~13!, and ~14!, for small Knudsen numbers when the forc
parameterF̂ is scaled as Eq.~18!. In this section, we give
some numerical results~numerical solutions of the origina
system! for intermediate values of the Knudsen number
the case whereF̂ is fixed. We first give a brief comment o
the numerical solution method and then give results of an
sis.

A. Some comments on the numerical method

In the numerical analysis, we can take advantage of
nice property of the BGK model that thez2 andz3 variables
can be eliminated in spatially one-dimensional proble
@35#. Let us introduce the following~dimensionless! mar-
ginal velocity distribution functions, which are the function
of x1 andz1 :

F Ga

Gb

Gc

G5E
2`

` E
2`

` F 1
z2

z2
21z3

2
G f̂ dz2dz3 . ~63!

By multiplying Eq. ~9! by 1, z2 , andz2
21z3

2 and integrating
the respective equations over the whole range ofz2 andz3 ,
we obtain the simultaneous equations forGa , Gb , andGc .
The corresponding boundary conditions are derived by
same way from Eqs.~13! and~14!. In summary, the resulting
equations are given by

z1

]

]x1
F Ga

Gb

Gc

G2F̂F 0
Ga

2Gb

G5
2

ApKn
r̂F Gae2Ga

Gbe2Gb

Gce2Gc

G , ~64!

where

s

5-14
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F Gae

Gbe

Gce

G5
r̂

~pT̂!1/2
expS 2z1

2

T̂
D F 1

v̂2

v̂2
21T̂

G , ~65!

r̂5E
2`

`

Gadz1 , ~66a!

v̂25~1/r̂ !E
2`

`

Gbdz1 , ~66b!

T̂5~2/3r̂ !E
2`

`

@~z1
21 v̂2

2!Ga22v̂2Gb1Gc#dz1 , ~66c!

and the boundary conditions are given by

F Ga

Gb

Gc

G5
1

Ap
r̂wexp~-z1

2!F 1
0
1
G

for 6z1.0 at x1571/2, ~67!

r̂w572ApE
6z1,0

z1Ga~71/2,z1!dz1 . ~68!

This system, in which the derivative term with respect toz2
@cf. Eq. ~9!# has disappeared, can be solved numerically b
finite-difference method in the same way as in Ref.@36#,
where half-space problems of strong condensation
evaporation are analyzed. Since the detailed descriptio
the numerical method is found there, we omit it in t
present paper. Because of the symmetry of the system~64!–
~68! with respect to thex2 axis, we carry out the actua
computation in the half range 0<x1<1/2 imposing the
specular reflection condition forGa , Gb , andGc at x150. It
should be noted here thatp̂22, p̂33, and q̂2 cannot be ex-
pressed in terms of the marginal velocity distribution fun
tionsGa , Gb , andGc . However, once these are obtained, t
r̂, v̂2 , and T̂ and thus f̂ e in the original equation~9! are
determined. Then, we can easily integrate Eq.~9! numeri-
cally with respect tox1 under the boundary condition~13! to
generatef̂ . In this way, we can computep̂22, p̂33, and q̂2
easily. @In this process, one can also get rid ofz3 by intro-
ducing the marginal velocity distribution functionsFa

5* f dz3 and Fb5*z3
2f dz3 and using the equations an

boundary conditions for them derived by the correspond
integrations of Eqs.~9! and ~13!.#

In Sec. III B, we carried out a numerical analysis of t
Knudsen-layer problem~47a!–~47c! to determine the slip co
efficients as well as the Knudsen-layer corrections. In t
analysis, the elimination ofz2 and z3 mentioned above ha
also been made. That is, we introduce three marginal velo
distribution functionsHam , Hbm , and Hcm of Fm defined
respectively byGa , Gb , andGc with f̂ replaced byFmE in
Eq. ~63!. Then the decomposition~51! is automatically
made, i.e.,Hb , which contains onlyFm

o , is decoupled from
Ha and Hc containing only Fm

e . Then the resulting
02631
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boundary-value problems forHb and those for (Ha ,Hc)
were solved numerically by a finite-difference method sim
lar to that used for solving Eqs.~64!–~68!. The slip coeffi-
cients associated withHb ~i.e., b1a , b2b , b2c , and b2d!
were determined in the same way as in Ref.@30#, while those
associated with (Ha ,Hc) ~i.e., b̃1a , b̃2b , b̃2c , and b̃2d!
were determined in the same way as in Ref.@37#.

B. Results of numerical analysis

Before presenting the results of numerical analysis,
give the solution for the free-molecular flow (Kn5`), that
is,

f̂ 5
1

p3/2expS 2z1
22F z22S x16

1

2D F̂

z1
G2

2z3
2D ~6z1.0!,

~69a!

r̂51, v̂2→`, T̂→`,

p̂115 p̂3351, p̂22→`, p̂1252x1F̂, ~69b!

q̂150, q̂2→`.

Here, we compute the macroscopic variables by integra
over a truncatedz i space with2`,z1,2d and d,z1
,` (d.0) and then taking the limit asd→0. In this limit,

v̂2 , T̂, p̂22, andq̂2 diverge to~plus! infinity.
In Figs. 11 and 12, we show the profiles of the dens

flow velocity, and temperature for various Knudsen numb
for two fixed values of the force parameterF̂ @Eq. ~12a!#,
i.e., F̂50.05 ~Fig. 11! and F̂50.5 ~Fig. 12!. In the former
case whereF̂ is small, the flow speed is naturally lower, an
thus the nonuniformity in the density and temperature
smaller compared with the latter case. ForF̂50.5 ~Fig. 12!,
a high-speed flow is caused for small Kn@note that
v2 /(2RT0)1/25A5/6 corresponds to the sonic speed#, and
correspondingly the variation in the density and temperat
becomes large. For large Kn, the profiles tend to beco
uniform. As Kn increases from small values, the flow spe
in the bulk of the gas decreases, becomes lowest at inte
diate values of Kn@Kn.1 in Figs. 11~b! and 12~b!#, and then
increases. As shown in Eq.~69b!, the flow speed become
infinity as Kn→`. On the other hand, for any fixed value o
F̂, the flow speed increases indefinitely as Kn approac
zero. In order for the flow speed to remain finite in the lim
Kn→0 ~continuum limit!, the force parameterF̂ should be
of the order of Kn@cf. Eq. ~18!#, as we have seen in Sec. II
The temperature in Figs. 11~c! and 12~c! also becomes low-
est at intermediate values of Kn, corresponding to the beh
ior of the flow speed.

Figures 13 and 14 show the profiles of the nontrivial co
ponents of the stress tensor and the heat-flow vector for v
ous Knudsen numbers forF̂50.05 ~Fig. 13! and 0.5~Fig.
14!. The result for Kn510, which ranges from 4.3631 t
4.7845, is omitted in Fig. 14~b!; and the results for Kn55
and 10, which range from 2.5637 to 3.1487 and from 10.7
5-15
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to 11.732, respectively, are omitted in Fig. 14~f!. The p11 is
independent ofX1 @Eq. ~16a!#, and p12/RravT0 is almost
independent of Kn@Figs. 13~d! and 14~d!#. Figures 13~f! and
14~f! show the change of the sign ofq2 ~the component of
the heat-flow vector parallel to the wall! depending on the
position in the gas for small Kn, as in the case of Figs. 8~f!,
9~f!, and 10~f!. As Kn increases from small values,q2 de-
creases, becomes smallest at intermediate values of Kn@Kn
55 in Fig. 13~f! and Kn50.5 in Fig. 14~f!#, and then in-
creases. ForF̂50.05,q2 is negative in the whole gap for
wide range of Kn~at least for 0.5<Kn<10!. The approach
of the physical quantities to the free-molecular flow valu
~69b! is rather slow.

FIG. 11. The profiles of the densityr, flow velocity v2 , and

temperatureT for various Kn in the case ofF̂50.05.~a! r, ~b! v2 ,
~c! T.
02631
s

Figure 15 and Table II show the mass flowM and the
heat flowQ in theX2 direction per unit width inX3 and per
unit time, i.e.,

M5E
2L/2

L/2

rv2dX152rav~2RT0!1/2LE
0

1/2

r̂ v̂2dx1 ,

~70a!

Q5E
2L/2

L/2

q2dX15rav~2RT0!3/2LE
0

1/2

q̂2dx1 , ~70b!

FIG. 12. The profiles of the densityr, flow velocity v2 , and

temperatureT for various Kn in the case ofF̂50.5. ~a! r, ~b! v2 ,
~c! T.
5-16
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versus the Knudsen number forF̂50.05@Fig. 15~a!# and 0.5
@Fig. 15~b!#. The corresponding results obtained from t
asymptotic analysis for small Kn in Sec. III are also sho
in Fig. 15~a! as well as in Table II. The dimensionless mas
flow rateM/2rav(2RT0)1/2L takes the minimum at an inter
mediate Knudsen number, which is similar to the Knuds
minimum @38# in the case of the Poiseuille flow caused
the pressure gradient@33#. It increases indefinitely in the
limit Kn→` as well as in the other limit Kn→0, but the
increase in the former is slow. The global heat flow chan
its direction depending on the Knudsen number, that is,
in the direction opposite to the flow in the range appro
mately Kn,15 for F̂50.05 and in the range approximate
0.15,Kn,0.8 for F̂50.5, but in the direction of the flow in
the other range. The increase of the dimensionless heat-
rate Q/rav(2RT0)3/2L with Kn after it takes the~negative!
minimum value is steep. It becomes infinitely large in t
free-molecular flow limit.

V. DISCUSSIONS

In the present paper, we have investigated a Poiseu
type flow of a rarefied gas between two parallel plates dri
by an external force in the direction parallel to the wall. T

FIG. 13. The profiles of the nontrivial components of the str
tensorpi j and the heat-flow vectorqi for various Kn in the case o

F̂50.05. ~a! p11, ~b! p22, ~c! p33, ~d! p12, ~e! q1 , ~f! q2 .
02631
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basic system used here is the BGK model of the Boltzm
equation and the diffuse reflection boundary condition. Fi
the case of small Knudsen numbers was investigated
means of a systematic asymptotic analysis of the basic
tem for weak external force@Eq. ~18!# ~Sec. III!. As a result,
the fluid-dynamic type equations and their boundary con
tions of slip type were obtained up to the second order in
Knudsen number, together with the Knudsen-layer corr
tions near the walls. Then, the original BGK system w
analyzed numerically by an accurate finite-difference meth

s FIG. 14. The profiles of the nontrivial components of the stre
tensorpi j and the heat-flow vectorqi for various Kn in the case of

F̂50.5. ~a! p11, ~b! p22, ~c! p33, ~d! p12, ~e! q1 , ~f! q2 .

FIG. 15. The mass-flow rateM and the heat-flow rateQ vs Kn.

~a! F̂50.05, ~b! F̂50.5. Here,. indicates the mass-flow rate,s

the heat-flow rate, and the solid line the corresponding results b
on the asymptotic analysis in Sec. III.
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TABLE II. Mass and heat-flow rates. The values in the parentheses indicate the results based
asymptotic analysis in Sec. III.

Kn

M/2rav(2RT0)1/2L Q/rav(2RT0)3/2L

F̂50.05 F̂50.5 F̂50.05 F̂50.5

0.02 2.3613 1021

(2.362 3 1021)
9.659 3 1021 21.360 3 1024

(21.248 3 1024)
2.010 3 1022

0.05 1.1763 1021

(1.178 3 1021)
6.806 3 1021 27.089 3 1024

(27.081 3 1024)
1.583 3 1022

0.1 7.374 3 1022

(7.385 3 1022)
5.280 3 1021 21.445 3 1023

(21.452 3 1023)
6.680 3 1023

0.2 5.198 3 1022

(5.197 3 1022)
4.262 3 1021 22.584 3 1023

(22.600 3 1023)
25.201 3 1023

0.3 4.520 3 1022

(4.490 3 1022)
23.461 3 1023

(23.478 3 1023)
0.5 4.047 3 1022 3.603 3 1021 24.775 3 1023 21.385 3 1022

0.75 3.5063 1021 25.791 3 1023

1 3.841 3 1022 3.492 3 1021 26.875 3 1023 1.206 3 1022

1.5 3.535 3 1021 7.371 3 1022

2 3.955 3 1022 3.603 3 1021 29.195 3 1023 1.676 3 1021

3 3.743 3 1021 4.477 3 1021

5 4.428 3 1022 3.982 3 1021 21.158 3 1022 1.358 3 100

7 4.671 3 1022 21.138 3 1022

10 4.961 3 1022 4.400 3 1021 29.317 3 1023 5.509 3 100

15 5.327 3 1022 21.877 3 1023

20 5.606 3 1022 1.010 3 1022
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for intermediate as well as small Knudsen numbers~Sec.
IV !. The numerical results for small Knudsen numbers w
compared with the results obtained by the fluid-dynam
type systems~Sec. III!.

The analysis of Sec. III shows that the non-Navier-Sto
effects ~other than the slip boundary conditions! manifest
themselves in the second order in the Knudsen number.
example, the anisotropy of the normal stressp11, p22, and
p33 and the heat flowq2 in the direction of the flow appear in
this order. The bimodal shape with a very slight local mi
mum at the center of the gap in the temperature profile
also attributed to the effect of the second-order tempera
field.

Finally, let us consider the continuum limit, where th
Knudsen number vanishes, on the basis of the result obta
in Sec. III. In this limit, the parameterF̂, which is a measure
of the external force, vanishes because of the setting of
~18!. Therefore, one may think that the present problem
duces to the case of a gas between two plates at rest~with a
common temperature! in the absence of an external force a
in consequence the gas is at rest. But it is not true. In
limit, the flow field in the present problem approaches
leading-order terms of the Hilbert expansion@Eqs. ~19! and
~20!#, i.e., r̂→ r̂H0 , T̂→T̂H0 , v̂2→ v̂2H0 , etc. That is, the
flow does not vanish in this limit, and the flow field depen
on the coefficienta in Eq. ~18!. In other words, a vanishingly
weak external force can cause a gas flow with a rather h
speed in the continuum limit. For instanc
uv2umax/(2RT0)

1/2.0.28 for a51 and uv2umax/(2RT0)
1/2
02631
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.0.75 fora53 @see Fig. 1~b!; note that (2RT0)1/2 is nearly
the sound speed#. The cause of this seemingly paradoxic
result can be explained on the basis of the Navier-Sto
equation. In the present unidirectional flow, the flow field
essentially determined by the balance of two terms: the
cosity term (1/r)d(mdv2 /dX1)/dX1 and the
external-force termF2 . The former is of the order of
(2RT0 /L)@U/(2RT0)1/2#Kn, where U is the reference
flow speed, becausem/r;(2RT0)1/2l 0 . Therefore, ifF2 is

of the order of (2RT0 /L)Kn or F̂;Kn @Eq. ~18!#, then the
external-force term is balanced by the viscosity term with
finite U or U;(2RT0)1/2, i.e., with a flow of a finite Mach
number. The situation remains unchanged in the limit
→0 because Kn cancels out from both terms. In this way
vanishingly weak external force can cause a flow of a fin
Mach number.

Here we recall that the present problem is originally ch
acterized by the two independent dimensionless parame

F̂ and Kn @Eq. ~12!# and that the continuum limit discusse

above is based on the settingF̂;Kn @Eq. ~18!# betweenF̂
and Kn. What happens in the continuum limit when o

imposes the conditionF̂;1 ~that is,F̂ is independent of Kn!
or F̂5o(Kn) is now obvious. WhenF̂;1 ~i.e., F2
;2RT0 /L!, the flow speed should beU/(2RT0)1/2;1/Kn,
so that it increases indefinitely as Kn→0. When F̂
5o(Kn), the flow speed should beU/(2RT0)1/25o(1) and
thus vanishes in the limit Kn→0. In this case, the solution
5-18
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approaches that in the case without an external force.
The balance between the terms that are of the order o

~in an appropriate scaling! and thus vanish in the continuum
limit @such as the viscosity term withU;(2RT0)1/2 and the
external-force term discussed above# results in the fact tha
the behavior in the continuum limit can be affected by va
ishingly small quantities in this limit. Such an effect is calle
the ghosteffect. In the present problem, this effect could
explained in the framework of the classical Navier-Stok
equations~see the preceding paragraphs!. But, in general, it
cannot be described by the Navier-Stokes system~more spe-
cifically, the conservation equations of mass, momentu
and energy with Newton’s law of stress and Fourier’s law
heat flow and the nonslip boundary condition for the veloc
and temperature! because, except for the viscosity and he
conduction terms, the effects of the order of Kn~such as the
thermal creep flow@30,39–41# and the nonlinear therma
stress flow@15,42,43#! are not contained in the system. As a
example, let us consider a gas in a closed container at
with an arbitrarily assigned surface temperature vary
along the surface in the absence of external forces. If
investigate the steady behavior of the gas using the Nav
Stokes system, we are led to the conclusion that the gas
rest and the temperature distribution in the gas is descr
by the steady heat-conduction equation with the nonju
condition. However, the second part of the conclusion is
true except for some special cases. In reality, the ther
creep and nonlinear thermal stress flows, which vanish in
continuum limit, give a significant effect on the temperatu
field in this limit. Therefore, the Navier-Stokes system ha
serious defect in describing the behavior of the gas eve
the continuum limit, in spite of the fact that it is general
accepted as the correct system for this limit. This fact w
pointed out in Ref.@15#. The reader is referred to Refs.@19#,
@44–47# in addition to Ref.@15# for the details and furthe
discussions.

It should be noted that we do not need to follow the afo
mentioned limiting process to the continuum limit by expe
ments. If the parameters of the experiment being perform
are close to the limit, then we can predict the result of
experiment from that of the limit. For instance, suppose t
a two-dimensional vertical channel with width 5 cm a
length, say 10 m, connects two large reservoirs separ
vertically and that the pressures of the gas in the two re
voirs are regulated in such a way that the pressure at
channel entrance in each reservoir is exactly the same. T
the gas flows downward through the channel because o
gravity. Suppose that the gas is argon, the pressure is 1
and the gravity is that on the earth. Then, the Knud
number is Kn.1.831026 and the force parameter i
F̂.431026. This is nearly the continuum limit and satisfie
the condition~18! with a.2.2. Therefore, one can predic
that the Mach number of the gas flow reaches 0.6 at
center of the channel.
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APPENDIX A: HILBERT EXPANSION OF THE
MACROSCOPIC QUANTITIES

In this appendix, we summarize explicit expressions
the coefficientshHm in terms of f̂ Hm for r̂H , v̂2H , T̂H , p̂H ,
p̂i jH , andq̂iH up to m52.

r̂H05E f̂ H0dz, ~A1a!

v̂2H05~1/r̂H0!E z2 f̂ H0dz, ~A1b!

T̂H05~2/3r̂H0!E @z1
21~z22 v̂2H0!21z3

2# f̂ H0dz,

~A1c!

p̂H05 r̂H0T̂H0 , ~A1d!

p̂i jH 052E ~z i2 v̂2H0d i2!~z j2 v̂2H0d j 2! f̂ H0dz,

~A1e!

q̂iH05E ~z i2 v̂2H0d i2!@z1
21~z22 v̂2H0!21z3

2# f̂ H0dz,

~A1f!

r̂H15E f̂ H1dz, ~A2a!

v̂2H15~1/r̂H0!E z2 f̂ H1dz2~ r̂H1 / r̂H0!v̂2H0 , ~A2b!

T̂H15~2/3r̂H0!E @z1
21~z22 v̂2H0!21z3

2# f̂ H1dz

2~ r̂H1 / r̂H0!T̂H0 , ~A2c!

p̂H15 r̂H0T̂H11 r̂H1T̂H0 , ~A2d!

p̂i jH 152E ~z i2 v̂2H0d i2!~z j2 v̂2H0d j 2! f̂ H1dz,

~A2e!

q̂iH15E ~z i2 v̂2H0d i2!@z1
21~z22 v̂2H0!21z3

2# f̂ H1dz

2~ p̂i2H01 3
2 p̂H0d i2!v̂2H1, ~A2f!

r̂H25E f̂ H2dz, ~A3a!

v̂2H25~1/r̂H0!E z2 f̂ H2dz2~ r̂H1 / r̂H0!v̂2H1

2~ r̂H2 / r̂H0!v̂2H0 , ~A3b!
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T̂H25~2/3r̂H0!E @z1
21~z22 v̂2H0!21z3

2# f̂ H2dz

2~ r̂H1 / r̂H0!T̂H12~ r̂H2 / r̂H0!T̂H02~2/3!v̂2H1
2 ,

~A3c!

p̂H25 r̂H0T̂H21 r̂H1T̂H11 r̂H2T̂H0 , ~A3d!

p̂i jH 252E ~z i2 v̂2H0d i2!~z j2 v̂2H0d j 2! f̂ H2dz

22r̂H0v̂2H1
2 d i2d j 2 , ~A3e!

q̂iH25E ~z i2 v̂2H0d i2!@z1
21~z22 v̂2H0!21z3

2# f̂ H2dz

2~ p̂i2H01 3
2 p̂H0d i2!v̂2H22~ p̂i2H11 3

2 p̂H1d i2!v̂2H1 ,

~A3f!

where d i j is the Kronecker delta. Note thatp̂13Hm5 p̂23Hm
50 andq̂3Hm50.

APPENDIX B: HILBERT EXPANSION OF THE LOCAL
MAXWELLIAN

The coefficientsf̂ eH0 , f̂ eH1 , and f̂ eH2 in Eq. ~21! are
summarized in the following:

f̂ eH05
r̂H0

~pT̂H0!3/2
expS 2

z1
21~z22 v̂2H0!21z3

2

T̂H0
D ,

~B1a!

f̂ eH15 f̂ eH0F r̂H1

r̂H0

12
~z22 v̂2H0!v̂2H1

T̂H0

1S z1
21~z22 v̂2H0!21z3

2

T̂H0

2
3

2D T̂H1

T̂H0

G , ~B1b!

f̂ eH25 f̂ eH0H r̂H2

r̂H0

12
~z22 v̂2H0!v̂2H2

T̂H0

1S z1
21~z22 v̂2H0!21z3

2

T̂H0

2
3

2D T̂H2

T̂H0

1
1

2
F r̂H1

r̂H0

12
~z22 v̂2H0!v̂2H1

T̂H0

1S z1
21~z22 v̂2H0!21z3

2

T̂H0

2
3

2D T̂H1

T̂H0

G 2

2
1

2
S r̂H1

r̂H0
D 2

22
~z22 v̂2H0!v̂2H1

T̂H0
2

T̂H1
02631
2S z1
21~z22 v̂2H0!21z3

2

T̂H0

2
3

4D S T̂H1

T̂H0

D 2

2
v̂2H1

2

T̂H0
J .

~B1c!

APPENDIX C: STRESS TENSOR AND HEAT-FLOW
VECTOR OF THE HILBERT SOLUTION

In this appendix, we summarize the expressions of
coefficientsp̂i jHm and q̂iHm of the Hilbert expansion~20! of
the stress tensorp̂i j and that of the heat-flow vectorq̂i in
terms ofp̂Hn , T̂Hn , andv̂2Hn(n<m) for m50, 1, and 2; that
is,

p̂11H05 p̂22H05 p̂33H05 p̂H0 ,
~C1!

p̂12H05 p̂21H050,

p̂11H15 p̂22H15 p̂33H15 p̂H1 ,
~C2!

p̂12H15 p̂21H152T̂H0

dv̂2H0

dx1
,

p̂11H25 p̂H21
3

2

1

r̂H0

d

dx1
S T̂H0

dT̂H0

dx1
D , ~C3a!

p̂22H25 p̂H21
1

2

1

r̂H0

d

dx1
S T̂H0

dT̂H0

dx1
D 12

T̂H0

r̂H0
S dv̂2H0

dx1
D 2

,

~C3b!

p̂33H25 p̂H21
1

2

1

r̂H0

d

dx1
S T̂H0

dT̂H0

dx1
D , ~C3c!

p̂12H25 p̂21H252T̂H1

dv̂2H0

dx1
2T̂H0

dv̂2H1

dx1
, ~C3d!

q̂1H05q̂2H050, ~C4!

q̂1H152
5

4
T̂H0

dT̂H0

dx1
, q̂2H150, ~C5!

q̂1H252
5

4
S T̂H0

dT̂H1

dx1
1T̂H1

dT̂H0

dx1
D , ~C6a!

q̂2H254
T̂H0

r̂H0

dT̂H0

dx1

dv̂2H0

dx1
1

1

2

T̂H0
2

r̂H0

d2v̂2H0

dx1
2 . ~C6b!

Note thatp̂13Hm5 p̂23Hm50 andq̂3Hm50.

APPENDIX D: KNUDSEN-LAYER PARTS OF THE
MACROSCOPIC QUANTITIES

The expressions ofhKm in terms of f̂ Km for r̂K , v̂2K , T̂K ,
p̂i jK , and q̂iK up to m52 are summarized below. Here, th
condition ~34! has been used.
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r̂K15E f̂ K1dz, ~D1a!

v̂2K15
1

~ r̂H0!B
E z2 f̂ K1dz, ~D1b!

T̂K15
2

3~ r̂H0!B
E S z22

3

2D f̂ K1dz, ~D1c!

p̂11K152E z1
2 f̂ K1dz, ~D1d!

p̂12K152E z1z2 f̂ K1dz, ~D1e!

p̂22K152E z2
2 f̂ K1dz, ~D1f!

p̂33K152E z3
2 f̂ K1dz, ~D1g!

q̂1K15E z1z2 f̂ K1dz, ~D1h!

q̂2K15E z2z2 f̂ K1dz2 5
2 ~ r̂H0!Bv̂2K1 , ~D1i!

r̂K25E f̂ K2dz, ~D2a!

v̂2K25
1

~ r̂H0!B
H E z2 f̂ K2dz2F ~ r̂H1!B1S dr̂H0

dy D
B

hG v̂2K1

2F ~ v̂2H1!B1S dv̂2H0

dy D
B

hG r̂K12 r̂K1v̂2K1J , ~D2b!

T̂K25
1

~ r̂H0!B
H 2

3 E S z22
3

2D f̂ K2dz

2F ~ r̂H1!B1S dr̂H0

dy D
B

hG T̂K1

2F ~ T̂H1!B1S dT̂H0

dy
D

B

hG r̂K12 r̂K1T̂K1J
2

4

3 F ~ v̂2H1!B1S dv̂2H0

dy D
B

hG v̂2K12
2

3
v̂2K1

2 ,

~D2c!

p̂11K252E z1
2 f̂ K2dz, ~D2d!
02631
p̂12K252E z1z2 f̂ K2dz, ~D2e!

p̂22K252E z2
2 f̂ K2dz22~ r̂H0!Bv̂2K1

2 24~ r̂H0!B

3F ~ v̂2H1!B1S dv̂2H0

dy D
B

hG v̂2K1 , ~D2f!

p̂33K252E z3
2 f̂ K2dz, ~D2g!

q̂1K25E z1z2 f̂ K2dz2~ p̂12H1!Bv̂2K1

2F ~ v̂2H1!B1S dv̂2H0

dy D
B

h1 v̂2K1G p̂12K1 ,

~D2h!

q̂2K25E z2z2 f̂ K2dz2F ~ v̂2H1!B1S dv̂2H0

dy D
B

h1 v̂2K1G p̂22K1

2
3

2
@ r̂K11~ r̂H0!BT̂K1#F ~ v̂2H1!B1S dv̂2H0

dy D
B

h

1 v̂2K1G2
5

2 H ~ r̂H1!B1S dr̂H0

dy D
B

h1~ r̂H0!B

3F ~ T̂H1!B1S dT̂H0

dy
D

B

hG J v̂2K12
5

2
~ r̂H0!Bv̂2K2 ,

~D2i!

where

z25zy
21z2

21z3
2, dz5dzydz2dz3 , ~D3!

and ( )B indicates the value on the wall (y50). In addition
to p̂13Km5 p̂23Km50 and q̂3Km50, we havep̂11Km50 be-
causep̂11K is given by p̂11K5 p̂112 p̂11H , and p̂11 and p̂11H
are the same constant@note that Eq.~16a! holds also forp̂11H

becausef̂ H is a solution of Eq.~9! and thatp̂115 p̂11H outside
the Knudsen layer#. Furthermore, the relationsp̂12K1
5 p̂12K250 andq̂1K150 hold. In fact, multiplying Eq.~47a!
with z2E and z2E, integrating with respect toz i over its
whole space, and taking into account the condition~47c!, we
have

E z1z2 f̂ Kmdz5E z1z2 f̂ Kmdz50, ~D4!

for m51 and 2, which, together with Eqs.~D1e!, ~D1h!, and
~D2e!, leads to the relations mentioned above~note thatq̂1K2
does not vanish!.
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